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 Abstract:  In  this  work,  an  adaptive  control  strategy  for  the  synchronization  of  robotic  manipulators  is  presented,  demonstrated 
 its  stability,  and  veri�ed  with  numerical  results.  The  idea  of  synchronization  is  that  various  systems  that  may  have  completely 
 di�erent  dynamics  behave  in  a  way  that  there  exists  no  residual  di�erence  in  their  outputs.  Here  we  present  an  approach  for 
 synchronizing  robot  manipulators  despite  unmodeled  dynamics  and  parametric  uncertainties,  external  disturbances,  and 
 parametric  and  structural  di�erences  of  the  robots.  It  is  achieved  with  the  help  of  a  nonlinear  controller  with  robust 
 characteristics  that  only  require  the  measurement  of  the  angular  positions.  The  uncertain  functions  are  grouped  into  a  new  state 
 that  is,  together  with  the  other  states  of  the  system,  estimated  by  a  high-gain  observer.  With  the  estimated  states,  feedback  is 
 implemented based on linearization. 
 Finally,  the  proposed  methodology  is  demonstrated  for  a  two-degree-of-freedom  (DOF)  robot  manipulator,  and  numerical 
 results are presented. 
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 Introduction 

 Synchronization  is  a  phenomenon  that  has  many  examples  in 
 natural  processes,  such  as  the  perfectly  coincided  oscillation  of 
 two  pendulum  clocks  hanging  from  the  same  base  [11],  the 
 synchronous  �ring  of  neurons  [2],[5]  or  the  symmetry  of 
 animal  gaits  [12].  As  in  these  examples,  interconnections  in  the 
 systems  achieve  synchronization  without  external  interference; 
 We  speak  of  self-synchronization.  Additionally,  we  �nd 
 numerous  examples  in  di�erent  mechanical  and  electrical 
 structures,  such  as  transmitter-receiver  systems,  quadruped 
 robot  movements  [3]  etc.  where  the  synchronization  is 
 achieved  by  external  inputs  and  couplings,  because  of  which  we 
 speak  of  controlled  synchronization.  This  article  focuses  on  the 
 controlled  synchronization  of  robot  manipulators.  We  �nd 
 many  applications  in  production  processes  where  robotic 
 systems'  synchronous  behavior  is  necessary  for  producing 
 equal-quality  parts.  In  surgery,  new  minimal  invasive  robotic 
 systems  have  been  developed  [8]  that  require  the 
 synchronization  of  the  robot  with  the  trajectory  that  the 
 operating surgeon generates. 

 While  the  control  of  robot  manipulators  is  a  classical  control 
 problem,  the  problem  of  the  synchronization  of  robots  has  not 
 received  much  attention.  We  can  �nd  some  approaches  in  [10] 
 where  the  system's  parameters  are  estimated  by  an  observer 
 using  only  angular  positions.  Using  those  estimates,  an  adaptive 
 control  strategy  is  realized.  However,  this  technique  requires 
 the  exact  knowledge  of  the  system's  dynamics,  which  results  in 
 a  non-robust  approach.  Therefore,  in  a  realistic  case,  there  is  no 
 knowledge of the friction’s terms, parameter variations, etc. 

 This  article  assumes  that  the  robot  system's  parameters  and 
 dynamics  are  uncertain  and  that  only  the  angular  positions  can 
 be  measured.  Departing  from  the  ideas  presented  in  [4]  we  use 
 the  proposed  robust  nonlinear  control  scheme  for  the  Multiple 
 Input  Multiple  Output  (MIMO)  case.  The  methodology 
 achieves  the  synchronization  of  an  arbitrary  number  of  robots 
 despite  structural  and  parametric  di�erences  of  the  robots,  and 
 it  is  robust  against  external  perturbations,  friction,  and 
 parameter  variations.  After  transforming  the  system  into  a 
 linearizable  canonical  form,  the  uncertain  dynamics  and 
 parameters  are  lumped  into  a  new  state.  This  new  state  is 
 unknown,  as  well  as  the  angular  velocities;  because  of  this,  a 
 high-gain  observer  estimates  it.  With  the  estimated  states,  a 
 stabilizing  controller  is  implemented  based  on  linearization. 
 Finally,  the  robots  are  connected  in  a  mutual  pattern  that 
 achieves  the  synchronization  between  the  robots  and  concerns 
 a trajectory given by the user. 

 Materials and Methods 

 Let  us  consider  a  robotic  manipulator  that  consists  of  links  𝑤 
 and  has  rotatory  degrees  of  freedom  that  create  the  𝑚 
 generalized  angular  positions  .  We  assume  that  it  𝑞 

 𝑖 
,  𝑖 =  1…  𝑚 

 is  possible  to  generate  torques  ,  in  the  link  𝑚 τ
 𝑖 

 𝑖 =  1     …     𝑚 

 connections,  for  example,  with  the  help  of  electrical  motors, 
 hydraulic  systems,  etc.  It  was  presumed  that  it  is  possible  to 
 measure  the  angular  positions  of  links  at  each  point  in  time 
 while  the  availability  of  the  angular  velocity  was  not  postulated. 
 The  robot's  links  were  modeled  as  perfectly  sti�,  i.e.,  bending 
 and  vibration  e�ects  were  neglected.  With  the  help  of  the 
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 Euler-Lagrange  or  similar  equations,  we  can  derive  the 
 following  model  of  a  robot  with  rotatory  degrees  of  𝑚 
 freedom: 

 𝑞 ¨ =  𝑀  𝑞 ( )− 1 τ −  𝐶  𝑞 ,  𝑞 ˙( ) 𝑞 ˙ −  𝑔  𝑞 ( ) −  𝑝  𝑞 ˙( )( )
 Eq. 1 

 is  the  symmetric,  positive  de�nite  inertia  matrix  𝑀  𝑞 ( ) ∈  𝑅  𝑚 × 𝑚 

 while  represent  the  Coriolis  and  centrifugal  𝐶  𝑞 ,  𝑞 ˙( ) 𝑞 ˙ ∈  𝑅  𝑚 

 forces.  denotes  the  gravity  forces,  and  𝑔  𝑞 ( ) = ∂
∂ 𝑞  𝐸 

 𝑝𝑜𝑡 
∈  𝑅  𝑚 

 the  friction  in  the  element  connections  is  represented  by  the 
 function  .  We  decided  to  use  the  static  friction  𝑝  𝑞 ˙( ) ∈  𝑅  𝑚 

 model  that  proposed  (Hellsen  et  al.,  2000).  The  following 
 equation represents it: 

 𝑝 
 𝑖 

 𝑞 
 𝑖 

˙( ) =  𝐵 
 𝑣 

 𝑖 

 𝑞 
 𝑖 

˙ +  𝐵 
 𝑓 

 𝑖 , 1 

 1 −  2 

 1 + 𝑒 
 2 ω

 𝑖 , 1 
 𝑞 

 𝑖 
˙( ) +  𝐵 

 𝑓 
 𝑖 , 2 

 1 −  2 

 1 + 𝑒 
 2 ω

 𝑖 , 2 
 𝑞 

 𝑖 
˙( )

 𝑖 =  1     …     𝑚 
 Eq. 2 

 is used to model the viscous friction, while the remaining  𝐵 
 𝑣 

 terms approximate the Coulomb and Stribeck friction e�ects. 
 We carry out the following transformation: 

 𝑥 
 1 
   ⋮     𝑥 

 𝑚 
   [ ] =  𝑞 

 1 
   ⋮     𝑞 

 𝑚 
   [ ]

 𝑥 
 𝑚 + 1 

   ⋮     𝑥 
 2  𝑚 

   [ ] =  𝑞 ˙
 1 
   ⋮     𝑞 ˙

 𝑚 
   ⎡⎢⎣
⎤⎥⎦

 Eq. 3 
 Now  (1)  becomes  a  nonlinear  MIMO  system,  that  is  𝑚    ×  𝑚 
 characterized by  �rst order di�erential equations:  𝑛    =     2  𝑚 

 𝑥 ˙ =  𝑓  𝑥 ( ) +  𝑔 
 1 

 𝑥 ( )τ
 1 

+  … +  𝑔 
 𝑚 

 𝑥 ( )τ
 𝑚 

 𝑦 =  𝑥 
 1 
   ...     𝑥 

 𝑚 
   [ ] 𝑇 

 Eq. 4 
 With  the  states  ,  the  system  input  and  the  system  𝑥 ∈  𝑅  𝑛  τ∈  𝑅  𝑚 

 output  .  The  system  is  characterized  by  the  function  𝑦 ∈  𝑅  𝑚 

 and the matrix  :  𝑓  𝑥 ( ) ∈  𝑅  𝑛  𝑔  𝑥 ( ) ∈  𝑅  𝑛 × 𝑛 

 𝑓  𝑥 ( ) =  𝑥 
 𝑚 + 1 

   ⋮        𝑥 
 2  𝑚 

    𝑀  𝑥 ( )− 1 −  𝐶  𝑥 ,  𝑥 ˙( ) 𝑥 ˙ −  𝑔  𝑥 ( ) −  𝑝  𝑥 ˙( )( )      ⎡⎢⎣
⎤
⎦

 𝑔  𝑥 ( ) =  0 
 𝑚  ×  𝑚 

    0 
 𝑚  ×  𝑚 

    0 
 𝑚  ×  𝑚 

    𝑀  𝑥 ( )− 1    ⎡⎢⎣
⎤⎥⎦

 Eq. 5 
 For  the  synchronization  of  two  or  various  robotic 
 manipulators,  we  will  presume  that  every  system  ful�lls  the 
 following assumptions: 

 A.1:  Only  the  angular  positions  can  be  𝑞 
 1 

...  𝑞 
 𝑚 [ ]

 measured  at  each  point  in  time,  i.e.,  not  all  the  states 
 of the system are available.  𝑥 

 𝑖 
,  𝑖 =  1 ...  𝑛 

 A.2:  There  is  no  exact  knowledge  of  the  structure  and  the 
 coe�cients of  ,  ,  , and  .  𝑀  𝑞 ( )  𝐶  𝑞 ,  𝑞 ˙( )  𝑔  𝑞 ( )  𝑝  𝑞 ˙( )

 A.3:  The  robotic  manipulators  may  be  strictly  di�erent, 
 but  they  all  have  the  same  degrees  of  freedom  and  the 
 same inputs. 

 Numerous  synchronization  designs  exist,  such  as  serial  or 
 parallel  master-slave  models,  etc.  (Nijmeijer  et  al.,  2003). 
 However,  this  work  will  discuss  the  mutual  synchronization 
 pattern,  where  synchronous  behavior  is  achieved  with  the 
 interaction  between  the  robots.  The  robots  are  arranged  in  a 
 network,  and  every  robot  can  be  connected  to  all  the  other 
 robots.  Let  us  suppose  we  have  a  number  of  robots.  For  𝑙 
 mutual  synchronization  the  trajectories  of  reference  with  𝑦 

 𝑟𝑒  𝑓 
 𝑖 , 𝑘 

 ,  of  the  robot  for  the  degree  of  freedom  𝑖 =  1…     𝑙  𝑘 =  1…     𝑚  𝑖 
 are calculated as follows:  𝑘 

 𝑦 
 𝑟𝑒  𝑓 

 𝑖 , 𝑘 

=  𝑦 
 𝑑 

 𝑘 

−
 𝑗 = 1 , 𝑗 ≠ 𝑖 

 𝑙 

∑  𝐾 
 𝑐  𝑝 

 𝑖 , 𝑗 

 𝑦 
 𝑖 , 𝑘 

−  𝑦 
 𝑗 , 𝑘 ( )

 Eq. 6 
 Where  is  the  desired  trajectory  given  by  the  user,  𝑦 

 𝑑 
∈  𝑅  𝑚 

 which  is  equal  for  all  the  robots  and  has  to  be  smooth.  are  𝐾 
 𝑐  𝑝 

 𝑖 , 𝑗 

 the  so-called  coupling  factors.  They  de�ne  how  strong  the 
 robot  will  interact  with  the  robot  .  High  values  of  the  𝑖  𝑗 
 coupling  factors  will  lead  to  a  fast  synchronization  between  the 
 robots,  and  low  values  will  lead  to  a  fast  synchronization  of  the 
 robots with the desired trajectory  .  𝑦 

 𝑑 
 The  synchronization  of  all  robot  manipulators  is  achieved  if 

 for  and  𝑙𝑖  𝑚 
 𝑡  →∞ 

 |  𝑦 
 𝑟𝑒  𝑓 

 𝑖 , 𝑘 

 𝑡 ( ) −  𝑦 
 𝑖 , 𝑘 

 𝑡 ( ) | →  0  𝑖 =  1…     𝑙 

 .  It  is  straightforward  that  this  is  only  possible  if  𝑘 =  1     …     𝑚 
 also  for  and  𝑙𝑖  𝑚 

 𝑡  →∞ 
 |  𝑦 

 𝑑 
 𝑘 

 𝑡 ( ) −  𝑦 
 𝑖 , 𝑘 

 𝑡 ( ) | →  0  𝑖 =  1…     𝑙 

 .  The  synchronization  problem  can  be  formulated  𝑘 =  1     …     𝑚 
 as  designing  the  interconnections  between  the  robots  and 
 creating  control  feedback  for  the  robots.  In  the  next  chapter, 
 we  will  propose  a  robust  control  feedback  strategy  well-suited 
 for robot mutual synchronization. 

 Results and Discussion 

 To  implement  the  proposed  feedback  scheme,  the  system  has  to 
 be  transformed  on  Burnes  Isidori  Normal  Form.  Because  this 
 transformation  requires  the  knowledge  of  the  relative  degree 
 vector, we will use the following de�nition [7]: 
 De�nition  2:  (Relative  Degree)  The  relative  degree  vector 

 of an a�ne MIMO system as in (4) is de�ned by:  𝑟 
 1 

...  𝑟 
 𝑚 [ ]

 1.  for  all  close  to  and  ,  𝐿 
 𝑔 

 𝑗 

 𝐿 
 𝑓 
 𝑘  ℎ 

 𝑖 
 𝑥 ( ) =  0  𝑥  𝑥 

 0 
 1    ≤  𝑖 

 ,  𝑗    ≤  𝑚  0 ≤  𝑘 ≤  𝑟 
 𝑖 

−  2 

 2.  The matrix  is nonsingular  𝐴  𝑥 
 0 ( )

 𝐴  𝑥 
 0 ( ) =  𝐿 

 𝑔 
 1 

 𝐿 
 𝑓 

 𝑟 
 1 
− 1 

 ℎ 
 1 

 𝑥 
 0 ( )   ···     𝐿 

 𝑔 
 𝑚 

 𝐿 
 𝑓 

 𝑟 
 1 
− 1 

 ℎ 
 1 

 𝑥 
 0 ( )   ⋮     ⋱    ⋮     𝐿 

 𝑔 
 1 

 𝐿 
 𝑓 

 𝑟 
 𝑚 

− 1 
 ℎ 

 𝑚 
 𝑥 

 0 ( )   ·⎡
⎢
⎣
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 With  this  de�nition,  we  can  �nd  that,  for  the  robot 
 manipulators,  and  that  the  relative  degree  of  𝐴  𝑥 ( ) =  𝑀  𝑥 ( )− 1 

 every  input  is  .  As  ,  the  system  𝑟 
 𝑖 

=  2 ζ =  𝑟 
 1 

+  … +  𝑟 
 𝑚 

=  𝑛 

 has full order and, therefore, has no internal dynamics. 
 Now  we  can  carry  out  the  transformation  ,  𝑧 = ϕ  𝑥 ( )

 , with: ϕ:  𝑅  𝑛 →  𝑅  𝑛 

ϕ  𝑥 ( ) =  𝑧 
 1 , 1 

    𝑧 
 2 , 1 

    𝑧 
 1 , 2 

   ⋮     𝑧 
 2 , 𝑚 

         [ ] =  ℎ 
 1 

 𝑥 ( )    𝐿 
 𝑓 
 ℎ 

 1 
 𝑥 ( )    ℎ 

 2 
 𝑥 ( )   ⋮     𝐿 

 𝑓[
 Eq. 7 

 With  this  transformation  the  system  (4)  is  linearizable  and 
 becomes: 

 𝑧 ˙ =  𝑧 
 1 , 1 
˙     𝑧 

 2 , 1 
˙     𝑧 

 1 , 2 
˙    ⋮     𝑧 

 2 , 𝑚 
˙          ⎡⎢⎣

⎤⎥⎦ =  𝑧 
 2 , 1 

   α
 1 

 𝑧 ( ) +
 𝑗 = 1 

 𝑚 

∑ β
 𝑗 , 1 

 𝑧 ( )τ
 𝑗 
    𝑧 

 2 , 2 
   ⎡⎢⎢⎣

 =  𝑦 =  𝑦 
 1 

...  𝑦 
 𝑚 [ ] 𝑇  𝑧 

 1 , 1 
...  𝑧 

 1 , 𝑚 [ ] 𝑇 

 Eq. 8 
 In  the  case  of  robot  manipulators,  the  transformation 

 ,  is  always  a  di�eomorphism  and  𝑧 = ϕ  𝑥 ( ) ϕ:  𝑅  𝑛 →  𝑅  𝑛 

 thereby  is  an  invertible  transformation.  This  means  𝑧 = ϕ  𝑥 ( )
 that  if  we  can  control  (8)  we  can  also  control  (4).  The  vector 

 is  de�ned  by  and  the α  𝑧 ( ):  𝑅  2  𝑚 →  𝑅  𝑚 α
 𝑖 

 𝑧 ( ) =  𝐿 
 𝑓 
 2  ℎ 

 𝑖 
ϕ− 1  𝑧 ( )( )

 matrix  by  .  We β  𝑧 ( ):  𝑅  2  𝑚 →  𝑅  𝑚 × 𝑚 β
 𝑗 , 𝑖 

 𝑧 ( ) =  𝐿 
 𝑔 

 𝑗 

 𝐿 
 𝑓 
 ℎ 

 𝑖 
ϕ− 1  𝑧 ( )( )

 �nd  that  and α  𝑧 ( ) =  𝑓 
 𝑚 + 1 

ϕ− 1  𝑧 ( )( ) ...  𝑓 
 2  𝑚 

ϕ− 1  𝑧 ( )( )⎡⎢⎣
⎤⎥⎦

 𝑇 

 .  Thus,  the  linearizing  controller β  𝑧 ( ) =  𝑀 ϕ− 1  𝑧 ( )( )
− 1 

 is  called  the  perfect  control.  If  we τ = β  𝑧 ( )− 1  𝑣 − α  𝑧 ( )( )
 choose  for  as follows  𝑣 

 𝑖 
 𝑖 =  1     …     𝑚 

 𝑣 
 𝑖 

=  𝑧 
 2 , 𝑖 
˙ =  𝑦 

 𝑖 
¨ =  𝑦 

 𝑟𝑒  𝑓 
 𝑖 

¨ − ρ
 1 , 𝑖 

 𝑦 
 𝑖 

˙ −  𝑦 
 𝑟𝑒  𝑓 

 𝑖 

˙( ) − ρ
 2 , 𝑖 

 𝑦 
 𝑖 

−  𝑦 
 𝑟𝑒  𝑓 

 𝑖 
( )

 Eq. 9 
 the  outputs  of  the  system  can  follow  any  a�ne  vector  of 
 trajectories  of  reference  without  any  permanent  𝑦 

 𝑟𝑒𝑓 
∈  𝐶  2 

 error. 

 Remark  1:  The  controller  requires τ = β  𝑧 ( )− 1  𝑣 − α  𝑧 ( )( )
 the  exact  knowledge  of  all  the  states  as  well  as  the  knowledge  𝑧 

 𝑖 

 of  and  for α
 𝑖 

 𝑧 ( ) =  𝐿 
 𝑓 
 2  ℎ 

 𝑖 
 𝑥 ( ) β

 𝑗 , 𝑖 
 𝑧 ( ) =  𝐿 

 𝑔 
 𝑗 

 𝐿 
 𝑓 
 ℎ 

 𝑖 
 𝑥 ( )

 at each point in time.  𝑖 =  1     …     𝑚 ,     𝑗 =  1     …     𝑚 

 However,  as  we  have  assumed  in  assumption  A.2,  in  the  case  of 
 the  robot  manipulators,  we  have  no  exact  knowledge  of  the 
 structure  and  the  coe�cients  of  ,  ,  and  𝑀  𝑞 ( )  𝐶  𝑞 ,  𝑞 ˙( )  𝑔  𝑞 ( )  𝑝  𝑞 ˙( )
 which  means  that  also  and  are  uncertain.  Besides, α  𝑧 ( ) β  𝑧 ( )
 according  to  assumption  A.1,  only  the  angular  positions 

 can  be  measured  while  the  𝑦 =  𝑧 
 1 , 1 

...  𝑧 
 1 , 𝑚 [ ] 𝑇 =  𝑞 

 1 
...  𝑞 

 𝑚 [ ] 𝑇 

 angular  velocities  are  𝑦 ˙ =  𝑧 
 2 , 1 

...  𝑧 
 2 , 𝑚 [ ] 𝑇 =  𝑞 

 1 
˙ ...  𝑞 

 𝑚 
˙⎡⎢⎣

⎤⎥⎦

 𝑇 

 unknown. 

 Following  the  ideas  presented  in  [4],  [1]),  and  [9]  where  the 
 controller  requires  only  the  least  prior  knowledge  about  the 
 system  (8)  and  can  stabilize  the  system  at  the  origin  or  make  it 
 follow  any  a�ne  trajectory.  The  control  scheme  does  not 
 require  the  knowledge  of  and  .  The  idea  is  to  lump α  𝑧 ( ) β  𝑧 ( )
 these  uncertain  terms  into  a  new  observable  state  that  can  be 
 reconstructed from the available angular positions  .  𝑞 

 1 
...  𝑞 

 𝑚 [ ]
 We  introduce  the  new  variable  vector  ,  which  contains  Θ∈  𝑅  𝑚 

 the uncertain functions  and  for  : α  𝑧 ( ) β  𝑧 ( )  𝑖 =  1     …     𝑚 

Θ
 𝑖 

 𝑧 , τ( ) = α
 𝑖 

 𝑧 ( ) +
 𝑗 = 1 

 𝑚 

∑ β
 𝑗 , 𝑖 

 𝑧 ( ) − β
 𝑒 

 𝑗 , 𝑖 

 𝑧 ( )( )τ
 𝑗 

 Eq. 10 
 is  a  user-de�ned  approximation  of  that  has β

 𝑒 
 𝑧 ( ) ∈  𝑅  𝑚 × 𝑚 β  𝑧 ( )

 to  ful�ll  .  With  this  we  can  rewrite  𝑠𝑖𝑔𝑛 β
 𝑒 

 𝑧 ( )( ) =  𝑠𝑖𝑔𝑛 β  𝑧 ( )( )

 the system (8), for  :  𝑖 =  1     …     𝑚 
 𝑧 

 1 , 𝑖 
˙ =  𝑧 

 2 , 𝑖 

 𝑧 
 2 , 𝑖 
˙ = Θ

 𝑖 
 𝑧 , τ( ) +

 𝑗 = 1 

 𝑚 

∑ β
 𝑒 

 𝑗 , 𝑖 

 𝑧 ( )τ
 𝑗 

 Eq. 11 
 Now  we  augment  our  system  by  additional  states  𝑚 

 with  . In this way (11) becomes: η
 𝑖 

 𝑡 ( ) = Θ
 𝑖 

 𝑧 , τ( )  𝑖 =  1     …     𝑚 

 𝑧 
 1 , 𝑖 
˙ =  𝑧 

 2 , 𝑖 

 𝑧 
 2 , 𝑖 
˙ = η

 𝑖 
 𝑡 ( ) +

 𝑗 = 1 

 𝑚 

∑ β
 𝑒 

 𝑗 , 𝑖 

 𝑧 ( )τ
 𝑗 

η
 𝑖 

˙  𝑡 ( ) = Ξ
 𝑖 

 𝑧 , η, τ( )

 Eq. 12 

 Where  ,  in  assumption  A.1  we Ξ
 𝑖 

 𝑧 , η, τ( ) =
∂Θ

 𝑖 

∂ 𝑧 
 𝑑𝑧 
 𝑑𝑡 +

∂Θ
 𝑖 

 ∂τ 
 𝑑 τ
 𝑑𝑡 

 have  supposed  that  we  have  no  exact  knowledge  about  all  the 
 states  .  Consequently,  the  new  state  vector  is  also  𝑥 

 𝑖 
η  𝑡 ( ) ∈  𝑅  𝑚 

 unknown.  To  solve  this  problem,  we  construct  the  following 
 high-gain  observer  that  is  based  on  the  available  states 

 .  𝑦 =  𝑧 
 1 , 1 

...  𝑧 
 1 , 𝑚 [ ]

 𝑧 
^

 1 , 𝑖 

˙
=  𝑧 

 2 , 𝑖 

^
+  𝐿 κ

 1 , 𝑖 
 𝑧 

 1 , 𝑖 
−  𝑧 

 1 , 𝑖 

^( )
 𝑧 
^

 2 , 𝑖 

˙
= η

 𝑖 

^
+

 𝑗 = 1 

 𝑚 

∑ β
 𝑒 

 𝑗 , 𝑖 

 𝑧 ( )τ
 𝑗 

+  𝐿  2 κ
 2 , 𝑖 

 𝑧 
 1 , 𝑖 

−  𝑧 
 1 , 𝑖 

^( )
η
^

 𝑖 

˙
=  𝐿  3 κ

 3 , 𝑖 
 𝑧 

 1 , 𝑖 
−  𝑧 

 1 , 𝑖 

^( )  𝑖 =  1…  𝑚 

 Eq. 13 
 Now  we  have  to  choose  the  coe�cients  in  such  a  way  that κ

 𝑖 , 𝑗 

 the  polynomials  ,  have  𝑠  3 + κ
 1 , 𝑖 

 𝑠  2 + κ
 2 , 𝑖 

 𝑠 + κ
 3 , 𝑖 

 𝑖 =  1     …     𝑚 

 poles  with  negative  real  parts.  is  a  tuning  parameter  that  𝐿 
 strongly in�uences the error dynamics. 
 Based  on  the  estimates  of  the  uncertainties  and  the η  𝑡 ( )
 estimates  of  we  can  construct  the  following  𝑧 

 2 , 1 
...  𝑧 

 2 , 𝑚 [ ] 𝑇 

 linearizing-like feedback controller 
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τ = β
 𝑒 

 𝑧 ( )− 1  𝑣 − η
^( )

 Eq. 14 
 With the input vector  that is de�ned as:  𝑣 ∈  𝑅  𝑚 

 𝑣 
 𝑖 

=  𝑦 
 𝑟𝑒  𝑓 

 𝑖 

¨ − ρ
 1 , 𝑖 

 𝑧 
 2 , 𝑖 

^
−  𝑦 

 𝑟𝑒  𝑓 
 𝑖 

˙( ) − ρ
 2 , 𝑖 

 𝑧 
 1 , 𝑖 

−  𝑦 
 𝑟𝑒  𝑓 

 𝑖 
( ),

 𝑖 =  1     …     𝑚 
 Eq. 15 

 Proposition  1:  The  robust  feedback  method  consists  of  the 
 dynamic  estimator  (13)  and  the  linearizing  controller  (15),  that 
 was  constructed  using  the  estimates  of  (i.e.  )  and  that Θ η  𝑡 ( )  𝑧 
 are provided by the high-gain observer. 
 Proof:  The  proof  of  stability  is  equal  for  all  the  degrees  of  𝑚 
 freedom.  Because  of  this,  we  will  carry  out  a  parallel  proof  for 
 all  the  degrees  of  freedom,  and  will  be  valid.  For  the  𝑖 =  1     …     𝑚 
 stability  of  the  observer,  we  de�ne  an  estimation  error  𝑒 

 𝑖 
∈  𝑅  3 

 in  the  following  way:  ,  and  𝑒 
 𝑗 , 𝑖 

=  𝐿  𝑟 − 𝑗 + 1  𝑧 
 𝑗 , 𝑖 

−  𝑧 
 𝑗 , 𝑖 

^( )  𝑗 =  1 ,  2 

 .  Now,  using  (12)  and  (13)  we  can  write  the  error  𝑒 
 3 , 𝑖 

= η
 𝑖 

− η
 𝑖 

^

 dynamics  as:  𝑒 
 𝑖 

˙

 𝑒 
 1 , 𝑖 
˙ =  𝐿 − κ

 1 , 𝑖 
 𝑒 

 1 , 𝑖 
+  𝑒 

 2 , 𝑖 ( )
 𝑒 

 2 , 𝑖 
˙ =  𝐿 − κ

 2 , 𝑖 
 𝑒 

 1 , 𝑖 
+  𝑒 

 3 , 𝑖 ( )
 𝑒 

 3 , 𝑖 
˙ =−  𝐿 κ

 𝑟 + 1 , 𝑖 
 𝑒 

 1 , 𝑖 
+ Ξ

 𝑖 
 Eq. 16 

 Or written in Matrix form: 
 𝑒 

 𝑖 
˙ =  𝐿 − κ

 1 , 𝑖 
    1     0    − κ

 2 , 𝑖 
    0     1    − κ

 3 , 𝑖 
    0     0    [ ] 𝑒 

 𝑖 
+  0     0    Ξ

 𝑖 
   [ ]

=  𝐿  𝐴 
 𝑖 

κ( ) 𝑒 
 𝑖 

+ Γ
 𝑖 

 Eq. 17 
 The  matrix  is  Hurwitz  if  the  poles  of  the  polynomial  𝐴 

 𝑖 
κ( )

 are  in  the  left  pane  of  the  complex  𝑠  3 + κ
 1 , 𝑖 

 𝑠  2 + κ
 2 , 𝑖 

 𝑠 + κ
 3 , 𝑖 

 plane.  If  this  is  the  case,  then,  according  to  Lyapunov,  there 
 exists  a  positive  de�nite  and  symmetric  matrix  such  that  𝑃 

 𝑖 

 where  is  the  identity  matrix  of  𝑃 
 𝑖 
 𝐴 

 𝑖 
+  𝐴 

 𝑖 
 𝑇  𝑃 

 𝑖 
=−  𝐼 

 𝑛 
 𝐼 

 𝑛 

 dimension  .  Now  we  choose  as  Lyapunov  𝑛  𝑉 
 𝑖 

 𝑒 
 𝑖 ( ) =  𝑒 

 𝑖 
 𝑇  𝑃 

 𝑖 
 𝑒 

 𝑖 
 function and get: 

 𝑉 
 𝑖 

˙  𝑒 
 𝑖 ( ) =

∂ 𝑉 
 𝑖 

 𝑒 
 𝑖 ( )

∂ 𝑒 
 𝑖 

 𝑒 
 𝑖 

˙ =−  𝐿  |  𝑒 
 𝑖 
 |  2 +  2  𝑒 

 𝑖 
 𝑇  𝑃 

 𝑖 
Γ

 𝑖 

≤−  𝐿  |  𝑒 
 𝑖 
 |  2 +  2|  𝑃 

 𝑖 
 ||  𝑒 

 𝑖 
 || Γ

 𝑖 
 | 

 Eq. 18 
 If  satis�es  and  for  some  and Γ

 𝑖 
 | Γ

 𝑖 
 | <  𝑟 

 1 
 |  𝑒 

 𝑖 
 | <  𝑟 

 2 
 𝑟 

 1 
>  0 

 then  is  a  bounded  function.  Let  be  𝑟 
 2 

>  0  |  𝑃 
 𝑖 
 ||  𝑒 

 𝑖 
 || Γ

 𝑖 
 | µ

 𝑖 
>  0 

 some  positive  constant  and  .  We  can  write  2|  𝑃 
 𝑖 
 ||  𝑒 

 𝑖 
 || Γ

 𝑖 
 | < µ

 𝑖 

 for  the  stability  of  the  observer  𝑉 
 𝑖 

˙  𝑒 
 𝑖 ( ) ≤−  𝐿  |  𝑒 

 𝑖 
 |  2 + µ

 𝑖 

 has  to  be  ful�lled  for  all  .  We  can  see  that  the  |  𝑒 
 𝑖 
 | ≤

µ
 𝑖 

 𝐿  𝑖 

 estimation  error  depends  directly  on  .  As  increases,  and  𝑒 
 𝑖 

 𝐿  𝐿  𝑒 
 𝑖 

 the  estimation  error  bound  will  decrease.  Because  of  this,  𝐿 
 should be chosen as big as possible. 

 We  conclude:  As  all  are  bounded,  if  then Γ
 𝑖 

 𝐿 >  𝐿 * >  0 

 for  and  .  With  this  we  𝑒  𝑡 ( ) →  0  𝑡  →∞  𝑧 
^
, η

^( ) →  𝑧 , η( )
 conclude,  that  (13)  and  (14)  yield  asymptotical  stabilization  of 
 the system (8). 
 To  illustrate  the  proposed  control  scheme,  we  will  now  apply 
 the  methodology  to  the  case  of  a  robot  manipulator  with 

 rotatory  degrees  of  freedom.  With  the  help  of  the  𝑚 =  2 
 Euler-Lagrange  or  similar  equations  we  can  calculate  ,  𝑀  𝑞 ( )

 ,  of (1) as follows:  𝐶  𝑞 ,  𝑞 ˙( )  𝑔  𝑞 ( )

 𝑀 
 11 

=  𝑚 
 1 
 𝑙 

 𝑐  1 
 2 +  𝑚 

 2 
 𝑙 

 1 
 2 +  𝑚 

 2 
 𝑙 

 𝑐  2 
 2 +  𝐼 

 1 
+  𝐼 

 2 
+  2  𝑚 

 2 
 𝑙 

 1 
 𝑙 

 𝑐  2 
 𝑐𝑜𝑠  𝑞 

 2 ( )
 𝑀 

 12 
=  𝑚 

 2 
 𝑙 

 𝑐  2 
 2 +  𝑚 

 2 
 𝑙 

 1 
 𝑙 

 𝑐  2 
 𝑐𝑜𝑠  𝑞 

 2 ( ) +  𝐼 
 2 

 𝑀 
 21 

=  𝑚 
 2 
 𝑙 

 𝑐  2 
 2 +  𝑚 

 2 
 𝑙 

 1 
 𝑙 

 𝑐  2 
 𝑐𝑜𝑠  𝑞 

 2 ( ) +  𝐼 
 2 

 𝑀 
 22 

=  𝑚 
 2 
 𝑙 

 𝑐  2 
 2 +  𝐼 

 2 

 𝐶 
 11 

=−  𝑚 
 2 
 𝑙 

 1 
 𝑙 

 𝑐  2 
 𝑠𝑖𝑛  𝑞 

 2 ( ) 𝑞 
 2 
˙

 𝐶 
 12 

=−  𝑚 
 2 
 𝑙 

 1 
 𝑙 

 𝑐  2 
 𝑠𝑖𝑛  𝑞 

 2 ( )  𝑞 
 1 
˙ +  𝑞 

 2 
˙( )

 𝐶 
 21 

=  𝑚 
 2 
 𝑙 

 1 
 𝑙 

 𝑐  2 
 𝑞 

 1 
˙  𝑠𝑖𝑛  𝑞 

 2 ( )
 𝐶 

 22 
=  0 

                                     𝑔  _ { 1 }( 𝑞 ) =  𝑔     𝑠𝑖𝑛 ( 𝑞 
 1 

 𝑚 
 1 
 𝑙 

 𝑐  1 
+  𝑚 

 2 
 𝑙 

 1 ( ) +  𝑚 
 2 
 𝑔𝑠𝑖𝑛  𝑞 

 1 
+  𝑞 

 2 ( ) 𝑙 
 𝑐  2 

 𝑔 
 2 

 𝑞 ( ) =  𝑚 
 2 
 𝑔  𝑙 

 𝑐  2 
 𝑠𝑖𝑛  𝑞 

 1 
+  𝑞 

 2 ( )
 We  will  use  the  same  friction  term  as  in  (2).  Again  𝑝  𝑞 ˙( ) ∈  𝑅  2 

 are  the  angular  positions  of  the  links  while  are  𝑞 ∈  𝑅  2  𝑞 ˙ ∈  𝑅  2 

 the  angular  velocities  and  are  the  torques  that  are  applied  τ∈  𝑅  2 

 to  the  links.  ,  are  the  lengths  of  the  links  and  ,  are  the  𝑙 
 1 

 𝑙 
 2 

 𝑙 
 𝑐  1 

 𝑙 
 𝑐  2 

 distances  to  their  centers  of  mass.  ,  are  the  masses  of  the  𝑚 
 1 

 𝑚 
 2 

 two  elements,  ,  are  their  moments  of  inertia  (including  the  𝐼 
 1 

 𝐼 
 2 

 motors, joints, etc.) and  is the acceleration  of gravity.  𝑔 

 After  replacing  ,  𝑥 
 1 
,  𝑥 

 2 [ ] 𝑇 =  𝑞 
 1 
,  𝑞 

 2 [ ] 𝑇  𝑥 
 3 
,  𝑥 

 4 [ ] 𝑇 =  𝑞 
 1 
˙ ,  𝑞 

 2 
˙⎡⎢⎣

⎤⎥⎦

 𝑇 

 and  we can rewrite our system  (1):  𝑀 *  𝑥 ( ) =  𝑀 − 1  𝑥 ( )

 𝑥 
 1 
˙     𝑥 

 2 
˙     𝑥 

 3 
˙     𝑥 

 4 
˙       ⎡⎢⎣

⎤⎥⎦ =  𝑥 
 3 
    𝑥 

 4 
    𝑓 

 3 
 𝑥 ( ) +  𝑀 

 1 , 1 
* τ

 1 
+  𝑀 

 1 , 2 
* τ

 2 
    𝑓 

 4 
 𝑥 ( ) +  𝑀 

 2 , 1 
* τ

 1 
+  𝑀 

 2 , 2
*⎡⎢⎣

 Eq. 19 
 Where 

 .  𝑓 
 3 

 𝑥 ( ),  𝑓 
 4 

 𝑥 ( )[ ] 𝑇 =  𝑀  𝑥 ( )* −  𝐶  𝑥 ,  𝑥 ˙( ) 𝑥 ˙ −  𝑔  𝑥 ( ) −  𝑝  𝑥 ˙( )( )
 Using  De�nition  2,  we  �nd  that  the  relative  degree  is  .  𝑟 =  2 
 Now  we  introduce  the  augmented  state  vector 

 and  the  user-de�ned  approximation  of η  𝑡 ( ) = η
 1 

 𝑡 ( ), η
 2 

 𝑡 ( )[ ] 𝑇 

 and get: β
 𝑒 

 𝑧 ( ) 𝑜𝑓 β  𝑧 ( ) =  𝑀 ϕ− 1  𝑧 ( )( )
− 1 

 𝑧 
 1 , 1 
˙ =  𝑧 

 2 , 1 

 𝑧 
 2 , 1 
˙ = η

 1 
 𝑡 ( ) + β

 𝑒 
 1 , 1 

 𝑧 ( )τ
 1 

+ β
 𝑒 

 2 , 1 

 𝑧 ( )τ
 2 
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η
 1 
˙  𝑡 ( ) = Ξ

 1 
 𝑧 , η, τ( )

 𝑧 
 1 , 2 
˙ =  𝑧 

 2 , 2 

 𝑧 
 2 , 2 
˙ = η

 2 
 𝑡 ( ) + β

 𝑒 
 1 , 2 

 𝑧 ( )τ
 1 

+ β
 𝑒 

 2 , 2 

 𝑧 ( )τ
 2 

η
 2 
˙  𝑡 ( ) = Ξ

 2 
 𝑧 , η, τ( )

 Eq. 20 
 For  the  reconstruction  of  the  angular  velocities  and  𝑧 

 2 , 1 
,  𝑧 

 2 , 2 [ ] 𝑇 

 the extended state  we construct the high-gain  observer: η  𝑡 ( )

 𝑧 
^

 1 , 1 

˙
=  𝑧 

 2 , 1 

^
+  𝐿 κ

 1 , 1 
 𝑧 

 1 , 1 
−  𝑧 

 1 , 1 

^( )
 𝑧 
^

 2 , 1 

˙
= η

 1 

^
+

 𝑗 = 1 

 2 

∑ β
 𝑒 

 𝑗 , 1 

 𝑧 ( )τ
 𝑗 

+  𝐿  2 κ
 2 , 1 

 𝑧 
 1 , 1 

−  𝑧 
 1 , 1 

^( )
η
^

 1 

˙
=  𝐿  3 κ

 3 , 1 
 𝑧 

 1 , 1 
−  𝑧 

 1 , 1 

^( )
 𝑧 
^

 1 , 2 

˙
=  𝑧 

 2 , 2 

^
+  𝐿 κ

 1 , 2 
 𝑧 

 1 , 2 
−  𝑧 

 1 , 2 

^( )
 𝑧 
^

 2 , 2 

˙
= η

 2 

^
+

 𝑗 = 1 

 2 

∑ β
 𝑒 

 𝑗 , 2 

 𝑧 ( )τ
 𝑗 

+  𝐿  2 κ
 2 , 𝑚 

 𝑧 
 1 , 2 

−  𝑧 
 1 , 2 

^( )
η
^

 2 

˙
=  𝐿  3 κ

 3 , 2 
 𝑧 

 1 , 2 
−  𝑧 

 1 , 2 

^( )
 Eq. 21 

 With  the  estimates  of  (21)  we  can  implement  the  following 
 controller: 

τ
 1 
   τ

 2 
   [ ] = β

 𝑒 
 1 , 1 

 𝑧 ( )   β
 𝑒 

 1 , 2 

 𝑧 ( )   β
 𝑒 

 2 , 1 

 𝑧 ( )   β
 𝑒 

 2 , 2 

 𝑧 ( )   ⎡
⎢
⎣

⎤
⎥
⎦

− 1 

 𝑣 
 1 

− η
 1 

^
    𝑣 

 2 
− η

 2

^⎡⎢⎣
 Eq. 22 

 In  order  to  follow  the  smooth  trajectory  of  reference 

 , we choose  as:  𝑦 
 𝑟𝑒𝑓 

=  𝑦 
 𝑟𝑒  𝑓 

 1 

,  𝑦 
 𝑟𝑒  𝑓 

 2 

⎡
⎢
⎣

⎤
⎥
⎦

 𝑇 

 𝑣 =  𝑣 
 1 
,  𝑣 

 2 [ ] 𝑇 

 𝑣 
 1 

=  𝑦 
 𝑟𝑒  𝑓 

 1 

¨ − ρ
 1 , 1 

 𝑧 
 2 , 1 

^
−  𝑦 

 𝑟𝑒  𝑓 
 1 

˙( ) − ρ
 2 , 1 

 𝑧 
 1 , 1 

−  𝑦 
 𝑟𝑒  𝑓 

 1 
( )

 𝑣 
 2 

=  𝑦 
 𝑟𝑒  𝑓 

 2 

¨ − ρ
 1 , 2 

 𝑧 
 2 , 2 

^
−  𝑦 

 𝑟𝑒  𝑓 
 2 

˙( ) − ρ
 2 , 2 

 𝑧 
 1 , 2 

−  𝑦 
 𝑟𝑒  𝑓 

 2 
( )

 Eq. 23 

 Now  the  coupling  factors  were  chosen  as  while  the  𝐾 
 𝑐𝑝 

=  10 

 we  consider  arbitrary  initial  conditions  for  ,  and  ,  .  𝑞 
 1  𝑖 

 𝑞 
 2  𝑖 

 𝑞 
 1  𝑖 
˙  𝑞 

 2  𝑖 
˙

 The  controller  was  switched  on  after  5  seconds,  and  after  10 
 seconds,  a  perturbation  torque  Nm  was  applied  to τ

 𝑝𝑒𝑟𝑡 
=  10 

 both  link  connections  of  all  the  robots.  was  turned  o� τ
 𝑝𝑒𝑟𝑡 

 after  15  seconds.  We  chose  an  arbitrary  smooth  function  for 
 the  trajectory  .  The  following  variables  were  chosen  𝑦 

 𝑑 
∈  𝑅  2 

 equally for all four robots: 
 Table 1. Parameters of the systems. 

 𝐿  𝑔  𝑙 
 1 

 𝑙 
 2 

 𝑙 
 𝑐  1 

 𝑙 
 𝑐  2 

 𝐼 
 1 

 𝐼 
 2 

 20  9.81  0.35  0.3  0.175  0.145  0.0064  0.004 
 In the table  is the high-gain parameter,  is  given in meters  𝐿  𝑙 

 and  is in  .  𝐼  𝐾𝑔 .  𝑚  2 

 In  Fig.  1,  we  can  see  the  free  oscillation  of  the  uncontrolled 
 robots  in  the  �rst  5  seconds.  After  this  period,  the  robots 
 follow  the  arbitrary,  user-given  trajectory  with  very  small  𝑦 

 𝑑 
 errors.  In  Fig.  2,  one  can  identify  the  torques  generated  to 
 compensate for the perturbation. 

 Figure 1  . (a)  and system output  . (b)  and system  𝑦 
 𝑑 

 1 

 𝑦 
 1 

 𝑦 
 𝑑 

 2 

 output  .  𝑦 
 2 

 a) 

 b) 

 Indeed,  note  that  in  Fig.  1,  the  e�ect  of  the  perturbation  is  very 
 low  (after  5  and  after  10  seconds).  This  shows  that  the 
 approach does not require the estimation of the perturbation. 

 Figure 2. (a)  and system input  . (b)  and system τ
 𝑝𝑒𝑟  𝑡 

 1 

τ
 1 

τ
 𝑝𝑒𝑟  𝑡 

 2 

 input  . τ
 2 

 a) 
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 b) 

 Conclusions 

 In  this  work,  we  have  presented  a  robust  control  scheme  that 
 achieves  synchronization  of  robot  manipulators  with  an 
 arbitrary  number  of  degrees  of  freedom.  It  compensates 
 unmodeled  dynamics,  uncertain  or  time-varying  parameters, 
 and  external  perturbations  and  requires  only  the  measurement 
 of  the  angular  positions  at  each  point  in  time.  The  central 
 feature  of  this  approach  is  that  the  uncertainties  are  lumped 
 into  an  extended  state,  which  a  high-gain  observer  reconstructs. 
 Based  on  this  estimation,  a  linearizing-like  control  law  is 
 implemented  that  achieves  the  synchronization  in  combination 
 with  a  mutual  connection  pattern  of  the  robots.  The 
 methodology  was  demonstrated  for  the  case  of  a  2  DOF  robot 
 manipulator  and  validated  by  numerical  results.  The  proposed 
 control  scheme  can  also  be  applied  to  other  mechanical 
 systems,  such  as  robot  manipulators  with  linear  degrees  of 
 freedom  and  in  combination  with  other  synchronization 
 patterns. 
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