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Resumen: En este trabajo, se expone una forma segura de transmisión de varias señales basada en la sincronización del caos. La idea 
es transmitir de un modo seguro tantas señales como la cantidad de estados del sistema caótico lo permita. Se requiere que el atractor 
caótico transmitido no cambie para mantener el nivel de seguridad. 
El método se basa en la teoría de control de múltiples entradas y múltiples salidas (MIMO) para sistemas no lineales. Además, el 
Transmisor y el Receptor se sincronizan a pesar de las incertidumbres en ambos sistemas. En este sentido, el esquema de 
comunicación segura es robusto. Se ilustra el resultado utilizando la sincronización de sistemas similares 
Palabras claves: Sincronización de Caos, Transmisión Segura Robusta,Control No Lineal.a 

Abstract: In this contribution, we present the secure transmission of several signals based on chaos synchronization. The idea is 
to transmit as many signals as the system states in a secure manner. It is required that the transmitted chaotic attractor must not 
change to maintain the security level. 
The method is based on the Multiple-Input and Multiple-Output (MIMO) control theory for nonlinear systems. Moreover, the 
Transmitter and Receiver synchronize in spite of the uncertainties in both systems. In this sense, the secure communication scheme 
is robust. We illustrate the result using the synchronization of similar systems. 
Keywords: Chaos Synchronization, Robust Secure Transmission, Nonlinear Control. 
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Introduction 
In the last two decades, the synchronization problem of chaotic 
systems has been widely studied, see, for instance, [1], [2], and 
[3]. The reasons for the interest in this problem are the 
potential applications and the synchronization phenomena. 
The main application is secure communication, where it is 
proved that relevant information can be transmitted and 
recovered using chaotic synchronization, and it has been 
demonstrated that the method is feasible, see for example, [4] 
and [5]. The other main interest is the dynamical phenomena 
of synchronization, where some relevant efforts have been 
made [6], [7], from where some open problems persist. For 
instance, one problem is the synchronization of strictly 
different systems, and the other is the synchronization of 
dynamical systems with different order [8]. The former deal 
with the problem of synchronize two systems whose models 
come from two different phenomena. The latter concerns the 
synchronization of dynamical systems that evolves in different 
spaces, in other words, a system with nonequal dimension. 
Synchronization of strictly different systems is still a problem 
under investigation. 
 
Secure communication is understood as the transmission of 
signals or messages masked or hidden into the chaotic attractor 
of the transmitter system. Then the Receiver provides the 
transmitted signal or message via a particular unmasking 
algorithm. In this manner a simplex communication scheme is 
constructed; however, until the authors' knowledge, the secure 

transmission schemes consist in transmitting a single message 
or signal provided that the signal does not destroy the chaotic 
behavior of the transmitter. Several chaos-based 
communication schemes have been published. Among these, 
two basic configurations can be identified. (i) An approach 
consists of adding the signal to the chaotic carrier, which is 
transmitted to the receiver. That is, the master system 
comprises the full-state model, whereas the slave system is 
composed of a reduced model, and the transmitted state 
completes the receiver system. (ii) Another 
transmitter/receiver design is based on the full state model of 
the driving and response systems [9]. That is, both drive and 
response systems are represented by dynamical systems of the 
same order. The homogeneous-synchronization configuration 
has been recently addressed via parameter modulation. 
Kocarev and Parlitz have proposed a generalization of these 
approaches, which extends the capabilities for constructing 
synchronized systems. Their approach enables the message 
signal to be integrated as a driving signal. However, the 
message signal can be recovered only under ideal conditions 
[10]. 
 
In this report, we illustrate that multiple signals can be 
transmitted using a single transmitter system and a single 
receiver using nonlinear Multiple-Input and Multiple-Output 
control techniques. In this way, a stereo audio signal can be 
transmitted, or different conversations can be embedded to be 
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transmitted at the same time. Moreover, chaotic behavior 
should be maintained. 
The control strategy is based on a diffeomorphic 
transformation obtained from the derivatives of the output 
functions along the system vector fields for a single signal see 
[5]. Then as the transmitter system poses many inputs as 
transmitted signals, it is required the same number of control 
inputs in the receiver in order to recover each signal. 

The writing is organized as follows: Section 2, presents the 
secure communication based on robust synchronization of 
similar chaotic systems, in Section 3 an application for secure 
communication is illustrated and finally Section 4 presents the 
conclusions of the work. 

Materials and Methods 
 
The key procedure consists in synchronize chaotic systems 
with same order and model. To this end, we consider chaotic 
systems in the following form 
 

𝑥�̇� = 𝑓(𝑥) + ∑ 𝛤𝑖,𝑇(𝑥)𝑠(𝑡)𝑖
𝑛
𝑖=1

𝑦𝑇 = ℎ𝑖(𝑥)                                 

𝑥�̇� = 𝑓(𝑥) + ∑ 𝛤𝑖,𝑅(𝑥)𝑢𝑖
𝑛
𝑖=1      

𝑦𝑅 = ℎ𝑖(𝑥)                              
  

    

 Ec. 1 
 

where vector fields 𝑓(𝑥): 𝛺 → 𝑅𝑛 are sufficiently smooth and 

similar, with 𝛺 ⊂ 𝑅𝑛 being the attraction region, 𝛤𝑖,𝑇(𝑥), 

𝛤𝑖,𝑅(𝑥) are the input vectors with 𝛤𝑖,𝑇 being unknown and 

𝑦𝑇 , 𝑦𝑅 ∈ 𝑅
𝑛,  ℎ𝑖,𝑇 , ℎ𝑖,𝑅: 𝑅

𝑛 → 𝑅 are the real-valued output 

functions, 𝑠𝑖(𝑡) are the signals to be transmitted and the signals 

ui stand for the control signals to achieve synchronization, and 
once the systems are synchronous, the recovered messages are 
reproduced by the control command signals. These 
considerations define a Multiple-Input and Multiple-output 
system. 
Therefore, we use the nonlinear control theory for MIMO 
systems. To begin with, from Master and Slave systems, the 
synchronization error system is given as 
 

𝑥�̇� = 𝛹(𝑥𝑒) + 𝛴𝑖=1
𝑛 (𝛤𝑖,𝑇(𝑥𝑒)𝑠𝑖(𝑡) − 𝛤𝑖,𝑆(𝑥𝑒)𝑢𝑖)

𝑦𝑖,𝑒 = ℎ𝑒,𝑖                                                                    
 Ec. 2 

 

where 𝑥𝑒 ∈ 𝑅
𝑛 is the state vector of the synchronization error 

system, 𝛹(𝑥𝑒) = 𝑓(𝑥𝑇) − 𝑓(𝑥𝑅), 𝑦𝑖,𝑒 = ℎ𝑖,𝑒 = 𝑥𝑖,𝑇 − 𝑥𝑖,𝑅 . 

The underlying idea of the nonlinear feedback control is to find 

functions ui such that the desired dynamical behavior is 

induced for any initial condition 𝑥𝑒,0 = 𝑥𝑒(0) in an attraction 

basin 𝑈𝑜 ⊂ 𝑅
𝑛. Then, from the Lie-based geometric approach, 

it is possible to find a transformation 𝑧 = 𝛷(𝑥𝑒), 𝛷: 𝑅
𝑛 → 𝑅𝑛, 

for 𝑧 ∈ 𝛺 ⊂ 𝑈, such that the affine form of the 
synchronization error system takes a linearizable canonical 
form. We depart from the relative degree definition for a 
MIMO system [11]. 
 
Definition 1. The Multiple Input and Multiple Output affine 

system (2) has the relative degree vector (𝜌1, 𝜌2, … , 𝜌𝑛) at the 

point 𝑥𝑒
0 if: 

i)  𝐿𝛤𝑗,𝑅𝐿𝛹
𝑘 ℎ𝑖,𝑒(𝑥𝑒) = 0, for all 1 ≤ 𝑗, 𝑖 ≤ 𝑛 , 𝑘 < 𝜌𝑖 −

1, and for all 𝑥𝑒 in the neighborhood of 𝑥𝑒
0 

ii)  the 𝑛 × 𝑛 matrix 
 

𝐴𝑥𝑒 =

(

 
 

𝐿𝛤1,𝑅𝐿𝛹
𝜌1−1ℎ1,𝑒 ⋯ 𝐿𝛤𝑛,𝑅𝐿𝛹

𝜌1−1ℎ1,𝑒

𝐿𝛤1,𝑅𝐿𝛹
𝜌2−1ℎ2,𝑒
⋮

𝐿𝛤1,𝑅𝐿𝛹
𝜌𝑛−1ℎ𝑛,𝑒

⋯
⋱
…

𝐿𝛤𝑛,𝑅𝐿𝛹
𝜌2−1ℎ2,𝑒
⋮

𝐿𝛤𝑛,𝑅𝐿𝛹
𝜌𝑛−1ℎ𝑛,𝑒)

 
 

 Ec. 3 

 

is nonsingular at 𝑥𝑒 = 𝑥𝑒
0. 

 
Remark 1. The previous definition of the relative degree is for 
a system with the same number of inputs signals as output 

signals. Therefore, the relative degree matrix 𝐴𝑥𝑒  is square. 

 

Suppose that the system (2) gives 𝜌𝑖 = 1, then the matrix 𝐴𝑥𝑒  
is given as follows 
 

𝐴𝑥𝑒 = (

𝐿𝛤1,𝑅ℎ1,𝑒
0

      
0

𝐿𝛤2,𝑅ℎ2,𝑒

…
…            

0
0

⋮
0

                  
…
0  

    ⋱
     …

    
…

𝐿𝛤𝑛,𝑅ℎ𝑛,𝑒

)𝐸c.4 

 

Due to the invertibility of the matrix 𝐴𝑥𝑒 , a diffeomorphic 

transformation can be determined. Such a transformation is 

given by 𝑧 = 𝛷(𝑥𝑒) = [ℎ1,𝑒 , ℎ2,𝑒 , … , ℎ𝑛,𝑒]
𝑇
, since the relative 

degree 𝜌𝑖 = 1 the linearizable system is given by 
 

𝑧�̇� = 𝜁𝑖(𝑧) + 𝜗𝑖(𝑧)𝑢𝑖
           𝑦𝑖,𝑒 = 𝑧𝑖 , 𝑖 = 1,2, … , 𝑛        

   Ec. 5 

 

where 𝜁𝑖(𝑧) = 𝐿𝛹ℎ𝑖,𝑒(𝛷(𝑧)
−1) and 𝜗𝑖(𝑧) =

𝐿𝛤𝑖,𝑅ℎ𝑖,𝑒(𝛷(𝑧)
−1). Thus, from (5) the linearizing controllers 

are given by 
 

𝑢𝑖 =
1

𝜗𝑖(𝑧)
(−𝜁𝑖(𝑧) + 𝜈𝑖)      Ec. 6 

 

Where 𝑖 = 1,2, … , 𝑛 and 𝜈𝑖 = 𝐾𝑖𝑧𝑖  is the new control that 
leads the system state to a prescribed reference, in this case, it 
leads the trajectories of the system (2) to the origin. 
 
Remark 2. The controller (6) is the so-called perfect control 
since it requires the perfect knowledge of the functions 

𝜁𝑖(𝑧) = 𝐿𝛹ℎ𝑖,𝑒(𝛷(𝑧)
−1) and 𝜗𝑖(𝑧) = 𝐿𝛤𝑖,𝑅ℎ𝑖,𝑒(𝛷(𝑧)

−1), in 

order to accomplish the synchronization. 
 
At this point, we can assume the following: 

Assumption 1. Only the state vector 𝑥𝑒 is available for feedback. 

Assumption 2. 𝜗𝑖(𝑧) is an injective function, bounded away 
from zero. 

Assumption 3. There exists a scalar function 𝜗�̂�(𝑧) available for 

feedback such that 𝑠𝑖𝑔𝑛[𝜗�̂�(𝑧)] = 𝑠𝑖𝑔𝑛[𝜗𝑖(𝑧)] at any (𝑧) ∈

𝑈0 ⊂ 𝑅𝑛 of (𝑧0). 
 
Thus, for a realistic case, we consider that these functions are 

unknown, in seek of clarity 𝐿𝛤𝑖,𝑅ℎ𝑖(𝛷(𝑧)
−1) represents the 
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way as the control input is affecting the system and 

𝐿𝛹ℎ𝑖(𝛷(𝑧)
−1) represents the dynamics that should be 

compensated (uncertain terms and parameters as well as the 
transmitted signals). These unknown functions represent a 
source of uncertainty due to parameters and non-modeled 
dynamics. Moreover, if there exist external perturbations or 

systems faults, they appear in function 𝐿𝛹ℎ𝑖(𝛷(𝑧)
−1) or 

𝐿𝛤𝑖,𝑅ℎ𝑖(𝛷(𝑧)
−1). For these reasons, the controllers (6) are not 

physically realizable. To overcome this problem, we propose a 
representation that lumps the uncertain terms into a new 
uncontrollable but observable state variable. Following ideas 
reported in [12], [13] and [14], the system (5) can be written in 

an extended form by defining 𝛿𝑖(𝑧) = 𝜗𝑖(𝑧) − 𝜗�̂�(𝑧), 
𝛩𝑖(𝑧, 𝑢) = 𝜁𝑖(𝑧) + 𝛿𝑖(𝑧)𝑢𝑖 , note that 𝛩𝑖(𝑧, 𝑢𝑖) lumps the 

uncertainties. Now, let us define 𝜂𝑖 = 𝜂𝑖(𝑡) ≡ 𝛩𝑖(𝑧, 𝑢𝑖). 
Thus, the system (5) takes the form 
 

𝑧�̇� = 𝜂𝑖 + 𝜗�̂�(𝑧)𝑢𝑖                

𝜂�̇� = 𝛯𝑖(𝑧, 𝜂𝑖, 𝑢𝑖 , 𝑢𝑖̇ )           
𝑦𝑖,𝑒 = 𝑧𝑖 ,       𝑖 = 1,2, … , 𝑛

   Ec. 7 

 

where 𝛯𝑖(⋅) = ∑ [
𝜕𝛩𝑘(⋅)

𝜕𝑧𝑘
(𝜂𝑘 + 𝜗�̂�(𝑧)𝑢𝑘)]

𝑛
𝑘=1 + 𝛿𝑖(𝑧)𝑢𝑖̇ , the 

augmented state ηi provides the dynamics of the uncertain 

function 𝛩𝑖(𝑧, 𝑢𝑖), therefore, the system (7) is dynamically 

equivalent to system (5). Thus the ith linearizing-like control 
law is modified in the following form 

𝑢𝑖 =
1

𝜗�̂�(𝑧)
(−𝜂𝑖 + 𝜈𝑖)   Ec. 8 

 

function 𝜗�̂�(𝑧) is an estimate of the function 𝜗𝑖(𝑧) and can be 

used provided that 𝑆𝑖𝑔𝑛 (𝜗�̂�(𝑧)) = 𝑆𝑖𝑔𝑛(𝜗𝑖(𝑧)) [14]. Notice 

that the sign should be constant since any change of sign in 

function �̂� implies a zero crossing, and the matrix 𝐴𝑥𝑒  losses 

invertibility. Then under the linearizing control feedback (8), 

the states (𝑧𝑖 , 𝜂𝑖) converge to zero. Since the feedback 

controller yield bounded trajectories of state 𝑧, thus 𝜂𝑖 is also 

bounded for all t ≥ 0. More precisely, if 𝑧𝑖 converges to an 

equilibrium point, then 𝜂𝑖 also converges to an equilibrium 
point. Therefore, under feedback (8), the states of system (7) 
converge asymptotically to zero. 
 
It is important to stress that the controller (8) is not realizable 

since the new state ηi is unknown. Therefore, a state estimator 
is proposed to estimate the uncertain states, which is given as 
follows 
 

�̂��̇� = 𝜂�̂� + 𝜗�̂�(𝑧)𝑢𝑖 + 𝜆𝑖𝜅1(𝑧𝑖 − 𝑧�̂�)

𝜂�̇̂� = 𝜆𝑖
2𝜅2(𝑧𝑖 − 𝑧�̂�)      𝑖 = 1,2⋯ , 𝑛

   Ec. 9 

 

where 𝜆𝑖 and 𝜅𝑖 are tuning parameters chosen in such way that 

the estimated values (𝑧�̂�, 𝜂�̂�) → (𝑧𝑖 , 𝜂𝑖). 
 

Proposition 1.  Let 𝑒 ∈ 𝑅𝟚 be an estimation error vector whose 

components are defined as: 𝑒1 = 𝜆(𝑧𝑖 − 𝑧�̂�) and 𝑒2 = 𝜂𝑖 − 𝜂�̂�. 
For sufficiently large 𝜆𝑖 , the dynamics of the estimation error 

decays globally exponentially to zero if 𝑆𝑖𝑔𝑛 (𝜗�̂�(𝑧)) =

𝑆𝑖𝑔𝑛(𝜗𝑖(𝑧)). 

Proof: Combining systems (7) and (9) the dynamics of the 
estimation error can be written as follows 
 

�̇� = 𝜆𝑖𝐷𝑒 + 𝛹(𝑧, 𝜂𝑖 , 𝑢𝑖)   Ec. 10 
 

where 𝛹(𝑧, 𝜂𝑖 , 𝑢𝑖) = [0, 𝛯(𝑧, 𝜂𝑖 , 𝑢𝑖)]
𝑇 and the matrix 𝐷 is 

 

𝐷 = (
−𝜅1 1
−𝑟𝜅2 0

)    Ec. 11 

 

in which 𝑟 = 𝜗𝑖(𝑧)/𝜗�̂�(𝑧) and 𝑟 > 0 which implies 

𝑆𝑖𝑔𝑛 (𝜗�̂�(𝑧)) = 𝑆𝑖𝑔𝑛(𝜗𝑖(𝑧)) thus 𝐷 is obviously Hurwitz. 

There exists a positive definite and symmetric matrix 𝑃 such 

that 𝑃𝐷 + 𝐷𝑇𝑃 = 𝐼2 where 𝐼2 is the identity matrix of 

dimension 2. Choosing 𝑉(𝑒) = 𝑒𝑇𝑃𝑒 as a the Lyapunov like 
function candidate, one has 
 

�̇�(𝑒) = −𝜆𝑖|𝑒|
2 + 2𝑒𝑇𝑃𝛹(𝑧, 𝜂𝑖, 𝑢𝑖)

�̇�(𝑒) ≤ −𝜆𝑖|𝑒|
2 + 2|𝑃||𝑒||𝛹(𝑧, 𝜂𝑖, 𝑢𝑖)|

 Ec. 12 

 

Let e be the estimation error. The function 𝛹(𝑧, 𝜂𝑖, 𝑢𝑖) 
satisfies |𝛹(𝑧, 𝜂𝑖, 𝑢𝑖)| ≤ 𝑟1 and 𝑒 ≤ 𝑟2 for some 𝑟1 > 0 and 

𝑟2 > 0, respectively. Thus, |𝑃||𝑒||𝛹(𝑧, 𝜂𝑖 , 𝑢𝑖)| is a certain 

bounded function. Moreover, let |𝑃||𝑒||𝛹(𝑧, 𝜂𝑖 , 𝑢𝑖)| ≤ 𝜖 be 

satisfied for some positive constant ϵ > 0. In this way, we have 

�̇�(𝑒) ≤ −𝜆𝑖|𝑒|
2 + 2ϵ   Ec. 13 

 

so that 𝑒 tends to a set bounded by |𝑒| ≤ √2𝜖/𝜆𝑖 . The 

dependence on the estimation error 𝑒 on 𝜆𝑖 deserves special 

attention. Note that as 𝜆𝑖 increases, 𝑒 will decrease, which also 
decreases the exponential estimation error bound. This 

argument shows that with the proposed method, 𝜆𝑖 should be 
made as large as possible and this achieves the proof. 
 
The previous proposition states that there exists a Lyapunov 

function that depends on parameter 𝜆𝑖 and provides the global 
exponential convergence of the estimation error dynamics. 
With the estimates of the states, the linearizing control low can 
be modified as follows 

𝑢𝑖 =
1

𝜗�̂�(𝑧)
(−𝜂�̂� + 𝜈𝑖)   Ec. 14 

An important characteristic is that this feedback only uses 
estimated values of the uncertain terms, which gives the feature 
of robust feedback, moreover it only requires the measure of 
the output states. 
 
Thus, the Robust Control Scheme for hyperchaotic 
synchronization can be achieved by means of the state 
estimator (9) and the robust feedback (14). In this sense, it is 
required that the state estimator converges to the 
corresponding states. This result can be stated in the following 
proposition. 
 
Proposition 2.  Consider two chaotic/hyperchaotic systems with 
a synchronization error given by the system (2). The system (2) 
converges asymptotically to zero under the feedback (14) via 
the stabilization of the extended system (7). 
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Proof:  Substituting the robust feedback (14) into (7) and 
considering the estimation error system (10), the closed-loop 
dynamics is given by 
 

𝑧�̇� = 𝜂𝑖 + 𝜗�̂�(𝑧)𝑢𝑖                                           

𝜂�̇� = 𝛯𝑖(𝑧, 𝜂𝑖 , 𝑢𝑖 , 𝑢𝑖̇ )                                       

�̇� = 𝜆𝐷𝑒 + 𝛹(𝑧, 𝜂𝑖 , 𝑢𝑖)𝑖 = 1,2,⋯ , 𝑛         

 Ec. 15 

 

Since 𝜂𝑖 = 𝛩(𝑧, 𝑢𝑖) and 𝑢𝑖 =
1

𝜗�̂�(𝑧)
(−𝜂�̂� + 𝜈𝑖) it follows that 

𝜂𝑖 = ℨ𝔦(𝑧, 𝜂𝑖 , 𝑒𝑖 , 𝑢𝑖, 𝑡) (which can be computed from the first 

integral of 𝜂�̇� = 𝛯𝑖(𝑧, 𝜂𝑖 , 𝑢𝑖, 𝑢𝑖̇ ), i.e., η𝑖 =

∫Ξ𝑖(𝑧, η𝑖 , 𝑒𝑖 , 𝑢, τ)𝑑𝜏. Then, according to the Contraction 

Mapping Theorem, the state ηi can be expressed globally and 

uniquely as a function of the coordinates (𝑧𝑖 , 𝑒𝑖). Now, note 

that since the matrix 𝐷 is Hurwitz by construction, and the 

nonlinear function 𝛹(𝑧, 𝜂𝑖 , 𝑢𝑖) is bounded, the estimation 
error system (15) is asymptotically stable. In this sense, given a 

compact set of initial conditions 𝜒𝑖 ⊂ 𝑅
𝟚 containing the origin, 

there exists an upper bound 𝑢𝑖,𝑚𝑎𝑥  such that 𝑢𝑖 ≤ 𝑢𝑖,𝑚𝑎𝑥  and 

a high gain estimator parameter 𝜆𝑖 such that 𝜒𝑖  is contained 
into the attraction basin. Hence, the closed-loop system is 

semi-globally practically stable, i.e., (𝑒𝑖 , 𝜂𝑖) → (0,0), and this 
achieves the proof.  
 
Therefore, with these results, one can design controllers that 
achieve synchronization in spite of uncertainties. Thus, we 
apply these results to construct a secure communication system 
based on synchronization.  
 
Results and Discussion 
To illustrate our proposal, we consider two chaotic Rössler 
systems given by 
 

𝑥1̇ = −𝑥2 − 𝑥3          
𝑥2̇ = 𝑥1 + 𝑎𝑥2                
𝑥3̇ = (𝑥1 − 𝑑)𝑥3 + 𝑏
𝑦𝑖 = 𝑥𝑖                          

   Ec. 16 

 
one for the Transmitter and the other for the Receiver. For this 
case, the parameters were considered equal in both systems. 
Then we desire to send three signals without excessive 
deformation or destroy the chaotic Transmitter attractor. In 
this example we transmit a square periodic signal and two 
sinusoids, all with different amplitudes and frequencies. Once 
the signals have been injected into the Transmitter system, the 
attractor of the Transmitter is illustrated in Figure 1, where 
there is a slight deformation of the attractor, and it still provides 
a chaotic behavior. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1. Chaotic attractor for the Rössler Transmitter 
system when the transmitted signals are injected. 

 
 
Therefore, the synchronization error system obtained from the 
Transmitter and Receiver system is given by 
 

�̇�1,𝑒 = −𝑥2,𝑒 − 𝑥3,𝑒 + 𝑠1(𝑡) − 𝑢1                                           
𝑥 ̇ 2,𝑒 = 𝑥1,𝑒 + 𝑎𝑅𝑥2,𝑒 + 𝑠2(𝑡) − 𝑢2                            

�̇�3,𝑒 = −(𝑥1,𝑒 − 𝑑𝑅)𝑥3,𝑒 + 𝛿(𝑥𝑇 , 𝑥𝑒) + 𝑠3(𝑡) − 𝑢3
𝑦𝑖,𝑒 = ℎ𝑖,𝑒,              𝑖 = 1,2,3.                                         

Ec. 17 

 

where the function 𝛿(𝑥𝑇 , 𝑥𝑒) stands for the terms given by the 
nonlinear operation between systems. As was stated in the 
previous section, system (17) is a nonlinear Multiple-Input and 
Multiple-Output one, moreover the relative degree matrix 

𝐴𝑥𝑒 = 𝐼3×3 which is invertible and satisfies the propositions of 

the previous section. Following the corresponding procedure, 
one has that the diffeomorphic transformation is given by 

𝛷(𝑥𝑒) = [ℎ1,𝑒, ℎ2,𝑒 , ℎ3,𝑒]
𝑇
. Once we have the transformation, 

the system for the synchronization error can be written as 
 

𝑧1̇ = 𝜁1(𝑧) − 𝜗1(𝑧)𝑢1
𝑧2̇ = 𝜁2(𝑧) − 𝜗2(𝑧)𝑢2
𝑧3̇ = 𝜁3(𝑧) − 𝜗3(𝑧)𝑢3
𝑦𝑖 = 𝑧𝑖 ,         𝑖 = 1,2,3.

  Ec. 18 

 

where the function 𝜁𝑖(𝑧) comprises the uncertain terms since 

it represents the derivatives of the 𝑖th output along the vector 
field of the synchronization error system and the function 

𝜗𝑖(𝑧) stands for the function of the input control and is 
considered uncertain, but by Assumption 3 there exists an 

estimated value given by 𝜗�̂�(𝑧). Therefore, we can calculate the 
controllers as follows 

𝑢𝑖 =
1

𝜗�̂�(𝑧)
(−𝜁(𝑧)𝑖 + 𝜈𝑖)  Ec. 19 

 

where the new dynamic is given by 𝜈𝑖 = 𝑘𝑖𝑧𝑖 , however as was 

discussed above, the function 𝜁𝑖(𝑧) is uncertain and the 
previous controller is not realizable. The idea is to lump the 
uncertain terms into a new state. Thus, the transformed system 
can be extended as follows 
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𝑧1̇ = 𝜂1 − 𝜗1̂(𝑧)𝑢1         

𝜂1̇ = 𝛯1(𝜂1, 𝑧, 𝑢1)           

𝑧2̇ = 𝜂2 − 𝜗2̂(𝑧)𝑢2     

𝜂2̇ = 𝛯2(𝜂2, 𝑧, 𝑢2)       

𝑧3̇ = 𝜂3 − 𝜗3̂(𝑧)𝑢3       
𝜂3̇ = 𝛯3(𝜂3, 𝑧, 𝑢3)       
𝑦𝑖 = 𝑧𝑖 , 𝑖 = 1,2,3.       

   

  Ec. 20 

 
This new system does not have the uncertainties of the 
synchronization error system; however, it has new states that 
provide the dynamic of the uncertainties. Again, the new states 
are not available from the system but can be estimated to have 
an estimated value, and the controllers can counteract them. 
 
The state estimators for system (20) are given by 
 

�̂�1̇ = 𝜂1̂ − 𝜗1̂(𝑧)𝑢1 + 𝐿1𝜅1,1(𝑧1 − 𝑧1̂)

�̂�1̇ = 𝐿1
2𝜅1,2(𝑧1 − 𝑧1̂)                               

�̂�2̇ = 𝜂2̂ − 𝜗2̂(𝑧)𝑢2 + 𝐿2𝜅2,1(𝑧2 − 𝑧2̂)

�̂�2̇ = 𝐿2
2𝜅2,2(𝑧2 − 𝑧2̂)                               

�̂�3̇ = 𝜂3̂ − 𝜗3̂(𝑧)𝑢3 + 𝐿3𝜅3,1(𝑧3 − 𝑧3̂)

�̂�3̇ = 𝐿3
2𝜅3,2(𝑧3 − 𝑧3̂)                              

  Ec. 21 

 
where this estimator provides the corresponding estimated 

values of the uncertain states ηi. With these estimates, we have 
that the controllers are given by 
 

𝑢𝑖 =
1

𝜗�̂�(𝑧)
(−𝜂�̂� + 𝜈𝑖)  Ec. 22 

 
Therefore, it is possible to determine the estimators and 
controller gains such that the closed-loop systems be stable, 
and applying these controllers to the corresponding systems, 
we obtain that the synchronization is achieved as illustrated in 

Figure 2, where the controllers were activated at 𝑡 ≥ 50 sec., 

after that the signals were applied or transmitted for 𝑡𝑠 ≥ 100 
sec. Thus, it is observed that neither the chaotic attractor nor 
the synchronization is affected considerably when the signals 
are injected. 
 
 
Figure 2.  Synchronization of the Transmitter and Receiver 

systems, at t ≥ 50 sec. the synchronization is initiated, whereas 

for ts ≥ 100 sec. the signals are injected into the Transmitter 
system. 

 
 
Once the chaotic synchronization and the signals have been 
injected, the recovered transmitted signals are presented in 
Figure 3. 
 
Note that the recovered signals are very close to the 
transmitter. Therefore, digital and analogous signals can be 
transmitted simultaneously in a secure way in spite of 
uncertainties in the Transmitter and Receiver systems. 

 
 

Figure 3. Transmitted and recovered signals. 

 
 

Conclusions 
In this contribution, we presented that using chaos 
synchronization, multiple signals can be transmitted in a secure 
way. The proposal is such that analog and digital signals can be 
transmitted without deforming or destroying the chaotic 
behavior of the Transmitter and Receiver. Also, we considered 
the case when the controllers do not pose full information 
about the controlled system, in this way, the communication 
scheme is robust against unknown parameter values or external 

(signal transmitted) perturbations. The scheme is general for 𝑛 
order systems, therefore, in principle, it can be used to transmit 

𝑛 signals. The key assumption was that the systems are similar 
and the parameter variations were not considered, but it is 
being an understudy. 
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